Divisibilité par 2, 3, 7 et 13 de certains entiers naturels

Énoncé

Pour tout entier naturel n non nul, on considère le nombre Un défini par :

$$U_n = 1 + 3 + 3^2 + \dots + 3^{n-1}$$
.

On cherche à déterminer si ce nombre peut être divisible par l'un ou plusieurs des nombres premiers suivants: 2; 3; 7 et 13.

Partie A.

- À l'aide d'un logiciel adapté, calculer U₁, U₂, · · · , U₃₀.
- 2. Déterminer les listes des restes de la division de U_n par 2; par 3; par 7 et par 13.
 - (a) Quelles conjectures peut-on en tirer?

Appeler l'examinateur pour lui présenter les conjectures trouvées.

(b) À quelle(s) condition(s) sur n, le nombre U_n semble-t-il être divisible par 7 × 13 ? par 2 × 7 × 13 ?

Appeler l'examinateur pour lui présenter les conjectures trouvées.

Partie B

Montrer que, pour tout entier naturel n non nul, U_n est divisible par 7 si, et seulement si, 7 divise 3ⁿ - 1.

Appeler l'examinateur pour vérification

- À l'aide de la question précédente, démontrer la conjecture émise pour 7.
- Dans le cas où U_n est divisible par 7, U_n est-il divisible par 7 x 13 ? par 2 x 7 x 13 ?

Production demandée

- Les différentes conjectures.
- La démonstration de la question 4.

Quelques commentaires personnels sur la fiche 122 2009 « divisibilité ... »

Logiciel utilisé: Excel

Attention! MOD() ne marche pas quand le nombre est trop grand : utiliser alors

= nombre- ENT(nombre/diviseur)*diviseur

n	3 ⁽ⁿ⁻¹⁾	u _n	divisible par 2?	divisible par 3?	divisible par 7?	divisible par 13?
1	1	1	1	1	1	1
2	3	4	oui, reste 0	1	4	4
3	9	13	1	1	6	oui, reste 0
4	27	40	oui, reste 0	1	5	1
5	81	121	1	1	2	4
6	243	364	oui, reste 0	1	oui, reste 0	oui, reste 0
7	729	1093	1	1	1	1
8	2187	3280	oui, reste 0	1	4	4
9	6561	9841	1	1	6	oui, reste 0
10	19683	29524	oui, reste 0	1	5	1
11	59049	88573	1	1	2	4
12	177147	265720	oui, reste 0	1	oui, reste 0	oui, reste 0
13	531441	797161	1	1	1	1
14	1594323	2391484	oui, reste 0	1	4	4
15	4782969	7174453	1	1	6	oui, reste 0
16	14348907	21523360	oui, reste 0	1	5	1
17	43046721	64570081	1	1	2	4
18	129140163	193710244	oui, reste 0	1	oui, reste 0	oui, reste 0
19	387420489	581130733	1	1	1	1
20	1162261467	1743392200	oui, reste 0	1	4	4
21	3486784401	5230176601	1	1	6	oui, reste 0
22	10460353203	15690529804	oui, reste 0	1	5	1
23	31381059609	47071589413	1	1	2	4
24	94143178827	141214768240	oui, reste 0	1	oui, reste 0	oui, reste 0

<u>Conclusion</u>: sujet original où la partie mathématique n'est pas négligeable; penser à transformer $u_n = \frac{3^n - 1}{2}$ et à observer les congruences de 3^n modulo 7 (3-2-6-3...) et modulo 13 (3-9-1-3...)