Nombres complexes 3^{ème} partie

III] Notation exponentielle

Tout nombre complexe non nul z de module r et d'argument θ peut s'écrire : $z = r e^{i\theta}$. Réciproquement, tout nombre complexe qui s'écrit $z = r e^{i\theta}$ ou $z = r (\cos \theta + i \sin \theta)$ avec r > 0 a pour module r et pour argument $\theta + 2k\pi$.

On a:
$$\left| e^{i\theta} \right| = 1$$
 et $\operatorname{Arg} \left(e^{i\theta} \right) = \theta$.

Exercice 1 : Déterminer la forme exponentielle de $1 + i \sqrt{3}$ et de 3 - 3i

Exercice 2: Dans le plan complexe, soient A, B et C trois points non alignés d'affixes respectives a, b et c. Démontrer que si $\frac{a-b}{a-c} = e^{i\frac{\pi}{3}}$ alors le triangle ABC est équilatéral.

Exercice 3 : Déterminer l'écriture algébrique de $(-1 + i)^{2012}$

Formules d'EULER : Pour tout nombre réel θ on a :

$$e^{i\theta} = \cos\theta + i \sin\theta$$

$$alors: \cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$et \quad \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

$$\underline{\text{Propriét\'es}}: \quad r e i\theta. \quad r' e i\theta' = r r' e i(\theta + \theta') \qquad ; \qquad \frac{1}{r e^{i\theta}} = \frac{1}{r} e^{-i\theta} \qquad ; \qquad \frac{r e^{i\theta}}{r' e^{i\theta'}} = \frac{r}{r'} e^{i(\theta - \theta')}$$

Formule de MOIVRE : pour tout
$$n \in \mathbb{Z}$$
, $(e^{i\theta})^n = e^{in\theta}$ ou $(\cos \theta + i \sin \theta)^n = \cos (n \theta) + i \sin (n \theta)$

L'utilisation des formules d'Euler et de Moivre permet de linéariser les polynômes trigonométriques , c'est à dire que le polynôme trigonométrique s'écrit uniquement avec des termes de la forme

a $cos(m\theta)$ et $b sin(n\theta)$ avec a, b, m, n et θ des réels

Exercice 4: Linéariser $\sin^3(x)$