La fonction exponentielle de base a

Définition: on appelle fonction exponentielle de base a, avec a réel strictement positif, la $\frac{1}{\text{fonction } f} \text{ définie par } : f(x) = a^x = e^{x \ln a}$ pour x réel quelconque.

Si a = 1, f(x) = 1 fonction constante.

Propriétés :

Pour tout réel
$$x$$
: $ln(a^x) = x ln(a)$

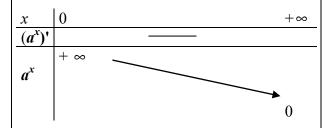
Pour tout réels
$$x$$
 et y : $a^x \times a^y = a^{x+y}$; $\frac{a^x}{a^y} = a^{x-y}$; $(a^x)^y = a^{xy}$
 $f'(x) = (\ln a) e^{x \ln a} = (\ln a) a^x$

Si 0 < a < 1 alors ln a < 0 done

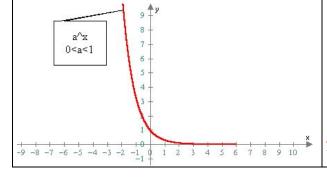
f' < 0, la fonction exponentielle de base a est donc strictement décroissante sur \mathbb{R} .

$$\lim_{x \to -\infty} a^x = \lim_{x \to -\infty} e^{x \ln a} = +\infty$$

$$\lim_{x \to +\infty} a^x = \lim_{x \to +\infty} e^{x \ln a} = 0$$



La droite d'équation y = 0 est une asymptote La droite d'équation y = 0 est une asymptote horizontale à la courbe au voisinage de $+\infty$.

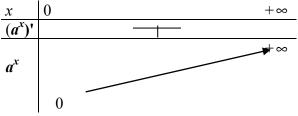


Si a > 1 alors $\ln a > 0$ donc

f' > 0, la fonction exponentielle de base a est donc strictement croissante sur $\mathbb R$.

$$\lim_{x \to -\infty} a^x = \lim_{x \to -\infty} e^{x \ln a} = 0$$

$$\lim_{x \to +\infty} a^x = \lim_{x \to +\infty} e^{x \ln a} = +\infty$$



horizontale à la courbe au voisinage de $-\infty$.

