Exercices à traiter durant le confinement

Exercice 1:

a) L'aire du parallélogramme ABCD est :

$$A_{ABCD} = b \times h$$
$$= 12 \times 6$$
$$= 72 cm^{2}$$

L'aire du losange ABCD est :

$$A_{ABCD} = (D \times d)/2$$

= $(9 \times 4.5)/2$
= 20.25 cm^2

b) i) L'aire de cette figure est :

$$A_i = (c \times c) + (\pi \times r \times r) \div 2$$

$$= 70 \times 70 + (\pi \times 35 \times 35) \div 2$$

$$\approx 4900 + 1924$$

$$\approx 6824cm^2$$

ii) L'aire de cette figure est :

$$A_{ii} = (L \times l) + (\pi \times r \times r)$$

$$= 90 \times 65 + (\pi \times 32,5 \times 32,5)$$

$$\approx 5850 + 3318$$

$$\approx 9168 cm^{2}$$

Exercice 2:

a)
$$V_1 = (c \times c \times h) \div 3$$

= $(2,4 \times 2,4 \times 5) \div 3$
 $\approx 10cm^3$

b)
$$V_2 = ((b \times h \div 2) \times h') \div 3$$

= $((4 \times 3 \div 2) \times 5,1) \div 3$

 $\approx 10cm^3$

c)
$$V_3 = (\pi \times r \times r \times h) \div 3$$

= $(\pi \times 4.2 \times 4.2 \times 5.6) \div 3$
 $\approx 103 cm^3$

Exercice 3:

a)
$$V_{IJDHK} = (L \times l \times h) \div 3$$

= $(8 \times 4 \times 8) \div 3$
 $\approx 85cm^3$

b)
$$V_{ORST} = ((b \times h \div 2) \times h') \div 3$$

= $((3 \times 5 \div 2) \times 9) \div 3$
 $\approx 23 cm^3$

Exercice 4:

1) Calcul de l'aire du terrain

$$A_{ABCE} = (AB \times AE) + (BD \times DC) \div 2$$

$$= (20 \times 40) + (40 \times 30) \div 2$$

$$= 800 + 600$$

$$= 1400 cm^{2}$$

Et, on a : $15 \times 35 = 525 \text{ m}^2$

$$1400 \div 525 \approx 2,7$$

Il devra acheter 3 sacs de gazon.

2) Calcul de la longueur BC.

On sait que le triangle BDC est rectangle en D, d'après le théorème de Pythagore, on a :

$$BC^2 = DC^2 + BD^2$$
, soit $BC^2 = 30^2 + 40^2 = 900 + 1600 = 2500$ donc $BC = \sqrt{2500} = 50$ m

Calcul du périmètre du terrain :

$$P = AB + BC + CE + EA$$

= $20 + 50 + 50 + 40$

160>150, il n'aura donc pas assez de grillage pour son terrain.

= 160m

Exercice 5:

Calcul de la hauteur h.

On sait que le triangle SHI est rectangle en H, d'après le théorème de Pythagore, on a :

$$SI^2 = SH^2 + HI^2$$
, soit $8^2 = h^2 + 5^2$, soit $h^2 = 64 - 25 = 39$ donc $h = \sqrt{39} \approx 6.2$

La longueur h est d'environ 6,2.

Exercice 6:

Calcul de la longueur AD.

On sait que le triangle A'AD est rectangle en A', d'après le théorème de Pythagore, on a :

$$AD^2 = AA^2 + A^2D^2$$
, soit $AD^2 = 30^2 + 40^2 = 900 + 1600 = 2500$ donc $AD = \sqrt{2500} = 50$.

Calcul du périmètre de ABCD :

$$P = AB + BC + CD + DA$$

$$=20+50+20+50$$

Il faudra un ruban adhésif de longueur 140 pour fermer la boîte.

Exercice 7:

a) Calcul de la longueur BD.

On sait que le triangle BCD est rectangle en C, d'après le théorème de Pythagore, on a :

BD² = DC²+ BC², soit BD² =
$$4^2+4^2=16+16=32$$
 donc AD = $\sqrt{32}\approx 5.7$ cm.

Calcul de la longueur DE.

On sait que le triangle EHD est rectangle en H, d'après le théorème de Pythagore, on a :

$$ED^2 = EH^2 + HD^2$$
, soit $ED^2 = 4^2 + 8^2 = 16 + 64 = 80$ donc $ED = \sqrt{80} \approx 8.9$ cm.

Calcul de la longueur EB.

On sait que le triangle EFB est rectangle en F, d'après le théorème de Pythagore, on a :

$$EB^2 = EF^2 + FB^2$$
, soit $EB^2 = 4^2 + 8^2 = 16 + 64 = 80$ donc $EB = \sqrt{80} \approx 8.9$ cm.

b) Comme EB = ED, alors on peut en conclure que le triangle EBD est isocèle de sommet principal E.